Google Scholar Profile

Journal Articles

*co-first, +corresponding

28. Bu, A., Afghah, F., Castro, N., Bawa, M., Kohli, S., Shah, K., Rios, B., Butty, V., and Raman, R.+, (2024). 2.5D actuating substrates enable decoupling the mechanical and biochemical effects of muscle exercise on motor neurons. BioRxiv Preprint. +corresponding

27. Raman, R.+, (2024). Biofabrication of living actuators. Annual Review of Biomedical Engineering. (in press). +corresponding

26. Raman, R.+ and Laschi, C., (2024). Soft robotics for human health. Device. (in press). +corresponding

25. Hatano, R., Smith, A., Raman, R., Zamora, J.E., Bashir, R., and McCloskey, K.E., (2024). Comparing fabrication techniques for engineered cardiac tissue. Journal of Biomedical Materials Research: Part A.

24. Lynch, N.*, Castro, N*, Sheehan, T., Rosado, L., Rios, B., Culpepper, M., and Raman, R.+, (2024). Enhancing and decoding the performance of muscle actuators with flexures. Advanced Intelligent Systems. *Cover, +corresponding | MIT News Feature

23. Rios, B.*, Bu, A.*, Sheehan, T., Kobeissi, H., Kohli, S., Shah, K., Lejeune, E., and Raman, R.+, (2023). Mechanically programming anisotropy in engineered muscle with actuating extracellular matrices. Device. *Cover, +corresponding | Github | MIT News Feature

22. Rousseau, R.*, Raman, R.*,+ , Tamir, T.*, Bu, A., Srinivasan, S., Lynch, N., Langer, R., White, F.M., and Cima, M.J., (2023). Actuated tissue engineered muscle grafts restore functional mobility after volumetric muscle loss. Biomaterials. *co-first, +corresponding | MIT News Feature

21. Filippi, M., Yasa, O., Kamm, R.D., Raman, R., and Katzschmann, R., (2022). Will microfluidics enable functionally integrated bio-hybrid robots? Proceedings of the National Academy of Sciences.

20. Aydin, O.*, Passaro, A*., Raman, R.*, Spellicy, S.*, Weinberg, R.P., Kamm, R.D., Sample, M., Truskey, G.A., Zartman, J., Dar, R.D., Palacios, S., Wang, J., Tordoff, J., Montserrat, N., Bashir, R., Saif, M.T.A., and Weiss, R., (2022). Principles for the design of multicellular engineered living systems. APL Bioengineering. *co-first

19. Raman, R.+, (2021). Engineered neuromuscular actuators for medicine, meat, and machines. MRS Bulletin.

18. Raman, R.*, Rousseau, E.B.*, Wade, M., Tong, A., Cotler, M.J., Kuang, J., Lugo, A.A., Zhang, E., Graybiel, A.M., White, F.M., Langer, R., and Cima, M., (2020). Platform for micro-invasive membrane-free biochemical sampling of brain interstitial fluid. Science Advances. *co-first

17. Raman, R., Hua, T., Gwynne, D., Collins, J., Tamang, S., Soares, V., Esfandiary, T., Zhou, J., Pajovic, S., Hayward, A., Langer, R., and Traverso, G., (2019). Light-degradable hydrogels as dynamic triggers in gastrointestinal applications. Science Advances. | MIT News Feature

16. Raman, R.+, 2019. Modeling muscle: A biohybrid machine offers insight into muscle growth, adaptation, and repair. Science, 363(6431). *Sartorius & Science Prize Essay

15. Raman, R.+ and Langer, R., (2019). Biohybrid Design Gets Personal: New Materials for Patient-Specific Therapy. Advanced Materials. *Cover

14. Grant, L.*, Raman, R.*, Cvetkovic, C., Ferrall-Fairbanks, M.C., Pagan Diaz, G. Hadley, P., Platt, M.O., and Bashir, R., (2018). Long-term cryopreservation and revival of tissue engineered skeletal muscle. Tissue Engineering: Part A. *co-first

13. Raman, R., Cvetkovic, C., and Bashir, R., 2017. A Modular Approach to Design, Fabrication, and Characterization of Muscle-Powered Biological Machines. Nature Protocols, 12(3), pp.519-533. *Cover

12. Raman, R., Grant, L., Seo, Y., Cvetkovic, C., Gapinske, M., Palasz, A., Dabbous, H., Kong, H., Perez-Pinera, P., and Bashir, R., 2017. Damage, Healing and Remodeling in Optogenetic Skeletal Muscle Bioactuators. Advanced Healthcare Materials. 6(12). *Cover

11. Ricotti, L., Trimmer, B., Feinberg, A.W., Raman, R., Parker, K.K., Bashir, R., Sitti, M., Martel, S., Dario, P., and Menciassi, A., 2017. Biohybrid actuators for robotics: A review of devices actuated by living cellsScience Robotics2(12).

10. Raman, R.+ and Bashir, R., 2017. Biomimicry, Biofabrication, and Biohybrid Systems: The Emergence and Evolution of Biological Design. Advanced Healthcare Materials.

9. Cvetkovic, C., Rich, M.H., Raman, R., Kong, H., and Bashir, R., 2017. A 3D-Printed Platform for Modular Neuromuscular Motor Units. Microsystems and Nanoengineering. 3, pp. 17015.

8. Raman, R., Mitchell, M., Perez-Pinera, P., Bashir, R., and Destefano, L., 2016. Design and Integration of a Problem-Based Biofabrication Course into an Undergraduate Biomedical Engineering Curriculum. Journal of Biological Engineering, 10(1), pp.10-18.

7. Raman, R., Cvetkovic, C., Uzel, S.G.M., Platt, R.J., Sengupta, P., Kamm, R.D., and Bashir, R., 2016. Optogenetic skeletal muscle-powered adaptive biological machines. Proceedings of the National Academy of Sciences, 113(13), pp.3497-3502.

6. Raman, R.*, Clay, N.E.*, Sen, S., Melhem, M., Qin, E., Kong, H., and Bashir, R., 2016. 3D Printing Enables Separation of Orthogonal Functions within a Hydrogel Particle. Biomedical Microdevices, 18(3), pp.1-7. *co-first

5. Raman, R., Bhaduri, B., Mir, M., Shkumatov, A., Lee, M.K., Popescu, G., Kong, H., and Bashir, R., 2015. High‐Resolution Projection Microstereolithography for Patterning of NeovasculatureAdvanced Healthcare Materials, 5(5). *Cover

4. Neiman, J.A.S., Raman, R., Chan, V., Rhoads, M.G., Raredon, M.S.B., Velazquez, J.J., Dyer, R.L., Bashir, R., Hammond, P.T., and Griffith, L.G., 2015. Photopatterning of hydrogel scaffolds coupled to filter materials using stereolithography for perfused 3D culture of hepatocytesBiotechnology and Bioengineering112(4), pp.777-787.

3. Cvetkovic, C.*, Raman, R.*, Chan, V., Williams, B.J., Tolish, M., Bajaj, P., Sakar, M.S., Asada, H.H., Saif, M.T.A., and Bashir, R., 2014. Three-dimensionally printed biological machines powered by skeletal muscle. Proceedings of the National Academy of Sciences111(28), pp.10125-10130. *co-first

2. Chan, V., Raman, R., Cvetkovic, C., and Bashir, R., 2013. Enabling microscale and nanoscale approaches for bioengineered cardiac tissueACS Nano7(3), pp.1830-1837.

1. Dorvel, B., Damhorst, G., Chan, V., Shim, J., Banerjee, S., Cvetkovic, C., Raman, R., and Bashir, R., 2013. Research Highlights: Highlights from the last year in nanomedicineNanomedicine8(1), pp.13-15.


2. Raman, R. Biofabrication. MIT Press.

1. Raman, R. and Bashir, R. “Stereolithographic 3D Bioprinting for Biomedical Applications”, 3D Biofabrication for Biomedical and Translational Research, 2015.


3. Raman, R., Culpepper, M., Lynch, N., Rosado, L., and Castro, N., The Massachusetts Institute of Technology. Compliant mechanism for enhancing and/or decoding performance of tissues. Provisional Application No. 63/571,325.

2. Issued: Bashir, R., Raman, R., and Cvetkovic, C., The Board of Trustees of the University of Illinois, 2021. Muscle-powered biological machines. U.S. Patent No. 10,906,169.

1. Issued: Bashir, R., Chan, V., Raman, R., and Cvetkovic, C., The Board of Trustees of the University of Illinois, 2018. Locomotive biological machines. U.S. Patent No. 10,156,560.

Doctoral Dissertation

Raman, R., “3D Printed Muscle-Powered Bio-Bots“, University of Illinois at Urbana-Champaign, 2016.

Masters Thesis

Raman, R., “3D Microfabrication of Biological Machines“, University of Illinois at Urbana-Champaign, 2013.